If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+12x-120=0
a = 18; b = 12; c = -120;
Δ = b2-4ac
Δ = 122-4·18·(-120)
Δ = 8784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8784}=\sqrt{144*61}=\sqrt{144}*\sqrt{61}=12\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{61}}{2*18}=\frac{-12-12\sqrt{61}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{61}}{2*18}=\frac{-12+12\sqrt{61}}{36} $
| -7(1-5n)=-287 | | -8x-9x+10=10-17x-4 | | -3.2=9.6+y/8 | | x/7+9=11 | | 7b=13-b | | 6x-1x=20-x | | -2(k+5)=20 | | 95=5-3(4v+2) | | 7m+5=12 | | 4(3b−1)=9−b | | 92=1-7(n-5) | | 10x-4=-54 | | 5-2x-8x=35 | | Y-3x^2+4=0 | | -x+9+3x=1 | | 10x-4=54 | | 1/24x=0 | | 5+x+3x=1 | | x5.5=-100 | | 5y+34=-2)-7y+1) | | 2.4^7-2x=3.8^3x+4 | | -25.5p+0.1p=0.9p+5.3 | | 2=15-2x-4x | | x(2)+3=4 | | 2.3x+4.4–3.7=16.4 | | 4x+6=6x-33 | | (7x-2)^2=3 | | 115-y=180-(y+85) | | 8.5x=10.5 | | 5z+3z-5=11 | | -4(x+3)+2(4x-9)=10 | | 1/2(4-2x)=12 |